A Review of Arithmetic

Although many hospitals use the unit-dose system when dispensing medicines, it is the nurse's responsibility to determine that the medication administered is exactly as prescribed by the health care provider. To give an accurate dose, the nurse must have a working knowledge of basic mathematics. This review is offered so that individuals may determine areas in which improvement is needed.

FRACTIONS

Objective

1. Demonstrate proficiency performing mathematic problems that involve the addition, subtraction, multiplication, and division of fractions.

Key Terms

numerator (NU -měr-ā-tǔr)
denominator (dě-NÖM-ǐ-nā-tūr)

Fractions are one or more of the separate parts of a substance or less than a whole number or amount.

EXAMPLE

$$
1-\frac{1}{2}=\frac{1}{2}
$$

COMMON FRACTIONS

A common fraction is part of a whole number. The numerator (dividend) is the number above the line. The denominator (divisor) is the number below the line. The line that separates the numerator and the denominator tells us to divide.

[^0]
EXAMPLES

The denominator represents the number of parts or pieces into which the whole is divided.

The fraction $1 / 4$ means, graphically, that the whole circle is divided into four (4) parts; one (1) of the parts is being used.

The fraction $1 / 8$ means, graphically, that the whole circle is divided into eight (8) parts; one (1) of the parts is being used.
From these two examples- $1 / 4$ and $1 / 8$-you can see that the larger the denominator number, the smaller the portion is (i.e., each section in the $1 / 8$ circle is smaller than each section in the $1 / 4$ circle). This is an important concept to understand for people who will be calculating medicine doses. The medicine ordered may be $1 / 4$ g , and the drug source available on the shelf may be $1 / 2 \mathrm{~g}$. Before proceeding to do any formal calculations, you should first decide if the dose you need to give is smaller or larger than the drug source available on the shelf.

EXAMPLES

Decide: "Is what I need to administer to the patient a larger or smaller portion than the drug available on the shelf?" Answer: $1 / 4 \mathrm{~g}$ is smaller than $1 / 2 \mathrm{~g}$; thus, the dose to be administered would be less than one tablet.

Try a second example: $1 / 8 \mathrm{~g}$ is ordered; the drug source on the shelf is $1 / 2 \mathrm{~g}$.

Decide: "Is what I need to administer to the patient a larger or smaller portion than the drug available on the shelf?" Answer: $1 / 8 \mathrm{~g}$ is smaller than $1 / 2 \mathrm{~g}$; thus, the dose to be administered would be less than one tablet.

TYPES OF COMMON FRACTIONS

1. Simple: Contains one numerator and one denominator: $1 / 4,1 / 20,1 / 60,1 / 100$
2. Complex: May have a simple fraction in the numerator or denominator:
$\frac{1}{2}$ over $4=\frac{1 / 2}{4}$
3. Proper: Numerator is smaller than denominator: $1 / 8$, 2/5, 1/100
4. Improper: Numerator is larger than denominator: $4 / 3$, 6/4, 100/10
5. Mixed number: A whole number and a fraction: $45 / 8,62 / 3,15 / 100$
6. Decimal: Fractions written on the basis of a multiple of $10: 0.5=5 / 10,0.05=5 / 100,0.005=5 / 1000$
7. Equivalent: Fractions that have the same value: $1 / 3=$ 2/6

WORKING WITH FRACTIONS

When working with fractions, the rule is to reduce the fraction to the lowest terms using a common number that is found in both the numerator and denominator. Divide the numerator and the denominator by the number that will divide into both evenly (i.e., the common denominator).

EXAMPLE

$$
\frac{25}{125} \div \frac{25}{25}=\frac{1}{5}
$$

Reduce the following:
a. $5 / 100=$ \qquad
b. $3 / 21=$ \qquad
c. $6 / 36=$ \qquad
d. ${ }^{12} / 44=$ \qquad
e. $2 / 4=$ \qquad

Finding the lowest common denominator of a series of fractions is not always easy. The following are some points to remember:

- If the numerator and denominator are even numbers, 2 will work as a common denominator, but it may not be the smallest one.
- If the numerator and denominator end with 0 or 5,5 will work as a common denominator, but it may not be the smallest one.
- Check to see if the numerator divides evenly into the denominator; if it does, this will be the smallest term.

Addition

Adding Common Fractions

When denominators are the same figure, add the numerators.

EXAMPLES

$$
\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=1+2+3=6 \text { or } \frac{6}{4}=1 \frac{1}{2}
$$

Add the following:
$\frac{2}{6}+\frac{3}{6}+\frac{4}{6}+\frac{9}{6}=\frac{2+3+4+9}{6}=\frac{18}{6}=3$

$$
\frac{1}{100}+\frac{3}{100}+\frac{5}{100}=\frac{9}{100}
$$

When the denominators are unlike, change the fractions to equivalent fractions by finding the lowest common denominator.

EXAMPLE

$\frac{2}{5}+\frac{3}{10}+\frac{1}{2}=$ \qquad

Answer

1. Determine the lowest common denominator. (Use 10 as the common denominator.)
2. Divide the denominator of the fraction being changed into the common denominator, and then multiply the product (answer) by the numerator.

$$
\begin{aligned}
\frac{2}{5}=\frac{4}{10} & \begin{array}{l}
\text { (Divide } 5 \text { into 10, and then multiply the } \\
\text { answer [2] by 2.) }
\end{array} \\
\frac{3}{10}=\frac{3}{10} & \begin{array}{l}
\text { (Divide 10 into 10, and then multiply } \\
\text { the answer [1] by 3.) }
\end{array} \\
\frac{1}{2}=\frac{5}{10} & \begin{array}{l}
\text { (Divide } 2 \text { into 10, and then multiply the } \\
\text { answer [5] by 1.) }
\end{array}
\end{aligned}
$$

$$
4+3+5=12
$$

$\frac{12}{10}=1 \frac{1}{5}$
(Add the numerators, and then place the total over the denominator [10]. Convert the improper fraction to a mixed number, and then reduce it to its lowest terms.)

Add the following:

$$
\text { a. } \begin{aligned}
\frac{2}{8} & =\frac{}{64} \\
+\frac{4}{64} & =\frac{}{64} \\
+\frac{5}{16} & =\frac{}{64}
\end{aligned}
$$

$\overline{64}$

b. $\frac{3}{7}=\frac{}{28}$
$+\frac{9}{14}=\frac{}{28}$
$+\frac{1}{28}=\frac{}{28}$

$\overline{28}$

Adding Mixed Numbers

Add the fractions first, and then add the whole numbers.

EXAMPLE

$2 \frac{3}{4}+2 \frac{1}{2}+3 \frac{3}{8}=$ \qquad

Answer

1. Determine the lowest common denominator. (Use 8 as the common denominator.)
2. Divide the denominator of the fraction being changed into the common denominator, and then multiply the product (answer) by the numerator.

$$
\begin{array}{ll}
2 \frac{3}{4}=\frac{6}{8} & \begin{array}{l}
\text { (Divide } 4 \text { into 8, and then } \\
\text { multiply the answer [2] by 3.) } \\
2 \frac{1}{2}=\frac{4}{8} \\
\frac{3}{8}=\frac{3}{8}
\end{array} \\
6+4+3=\frac{13}{8} & \begin{array}{l}
\text { (Divide 2 into 8, and then } \\
\text { multiply the answer [4] by 1.) } \\
\text { (Divide } 8 \text { into 8, and then } \\
\text { multiply the answer [1] by 3.) }
\end{array} \\
\begin{array}{l}
\text { (Add the numerators, and then } \\
\text { place the total over the } \\
\text { denominator [8].) }
\end{array} \\
2+2+3=7 & \begin{array}{l}
\text { (Add the whole numbers.) }
\end{array} \\
7+1 \frac{5}{8}=8 \frac{5}{8} & \begin{array}{l}
\text { (Convert the improper fraction } \\
13 / 8 \text { to a mixed number } 15 / 8, \text { and } \\
\text { then add it to the whole } \\
\text { numbers.) }
\end{array}
\end{array}
$$

b. $\frac{1}{2}=\frac{}{6}$
$+\frac{1}{3}=\frac{}{6}$
$+\frac{1}{6}=\frac{}{6}$

$$
=\overline{6}
$$

c. | $\frac{3}{5}$ | $=\frac{}{50}$ |
| ---: | :--- |
| $+\frac{4}{50}$ | $=\overline{50}$ |

$$
=\overline{50} \quad(\text { Reduce to lowest term. })
$$

Subtraction

Subtracting Fractions

When the denominators are unlike, change the fractions to equivalent fractions by finding the lowest common denominator.

EXAMPLE

$\frac{1}{4}-\frac{3}{16}=$ \qquad

Answer

1. Determine the lowest common denominator. (Use 16 as the common denominator.)
2. Divide the denominator of the fraction being changed into the common denominator, and then multiply the product (answer) by the numerator.
$\begin{aligned} \frac{1}{4} & =\frac{4}{16}\end{aligned} \quad \begin{aligned} & \text { (Divide } 4 \text { into 16, and then multiply the } \\ & \text { answer [4] by 1.) }\end{aligned}$
1 (Subtract the numerators, and then place the total [1] over the denominator [16].)

Subtract the following:
a. $\frac{3}{8}-\frac{2}{8}=\frac{-}{8}$
$3-2=1$ (Place answer over denominator.)
b. $\frac{1}{100}=\frac{}{300}$
$-\frac{1}{150}=\frac{}{300}$

Add the following:

Subtracting Mixed Numbers

Subtract the fractions first, and then subtract the whole numbers.

EXAMPLE

$4 \frac{1}{4}-1 \frac{3}{4}=$ \qquad

$$
\begin{aligned}
& \text { Answer } \\
& \qquad \begin{array}{l}
4 \frac{1}{4}=3 \frac{5}{4} \\
\begin{array}{l}
\text { (Note: You cannot subtract } 3 / 4 \text { from } 1 / 4 ;
\end{array} \\
-1 \frac{3}{4}=1 \frac{3}{4} \\
\begin{array}{l}
\text { (nerefore, borrow 1 [which equals } 4 / 4] \\
\text { from the whole numbers, and then add } \\
4 / 4+1 / 4=5 / 4 .)
\end{array} \\
2 \frac{2}{4}=2 \frac{1}{2} \\
\begin{array}{l}
\text { (Subtract the numerators, then place } \\
\text { the answer over the denominator [4]. } \\
\text { Reduce to lowest terms, and then subtract } \\
\text { the whole numbers.) }
\end{array}
\end{array}
\end{aligned}
$$

When the denominators are unlike, change the fractions to equivalent fractions by finding the lowest common denominator.

EXAMPLE

$$
2 \frac{5}{8}-1 \frac{1}{4}=
$$

\qquad

Answer

1. Determine the lowest common denominator. (Use 8 as the common denominator.)
2. Divide the denominator of the fraction being changed into the common denominator, and then multiply the product (answer) by the numerator.
$2 \frac{5}{8}=2 \frac{5}{8} \quad$ (Divide 8 into 8, and then multiply the answer [1] by 5.)
$-1 \frac{1}{4}=1 \frac{2}{8}$
(Divide 4 into 8, and then multiply the answer [2] by 1.)
(Subtract the numerators, and then
$1 \frac{3}{8}$ place the total [3] over the denominator [8]. Reduce to lowest terms, and then subtract the whole numbers.)
Subtract the following:
a. $\frac{7}{8}=\frac{}{24}$

$$
-\frac{3}{6}=\frac{}{24}
$$

b.

$$
\begin{array}{r}
6 \frac{7}{8}=\frac{-}{16} \\
-3 \frac{1}{16}=\frac{}{16}
\end{array}
$$

$$
\overline{16}
$$

Multiplication
 Multiplying a Whole Number by a Fraction EXAMPLE

$3 \times \frac{5}{8}=$ \qquad
Answer

1. Place the whole number over $1(3 / 1)$.
2. Multiply the numerators (top numbers), and then multiply the denominators (bottom numbers).

$$
\frac{3}{1} \times \frac{5}{8}=\frac{15}{8}
$$

3. Change the improper fraction to a mixed number.

$$
\frac{15}{8}=1 \frac{7}{8}
$$

Multiply the following:
a. $2 \times 3 / 4=$ \qquad
b. $15 \times 3 / 5=$ \qquad

Multiplying Two Fractions

 EXAMPLE$\frac{1}{4} \times \frac{2}{3}=$ \qquad

1. Use cancellation to speed the process:
$\frac{1}{4} \times \frac{1}{2}=\frac{1}{6}$
2
2. Multiply the numerators (top numbers), and then multiply the denominators: $1 / 2 \times 1 / 3=1 / 6$

Multiplying Mixed Numbers

EXAMPLE

$3 \frac{1}{2} \times 2 \frac{1}{5}=$ \qquad
Answer: Change the mixed numbers (i.e., a whole number and a fraction) to improper fractions (i.e., the numerator is larger than the denominator).

1. Multiply the denominator by the whole number, then add the numerator:
$31 / 2$ becomes $3 \times 2=6+1=7 / 2$
$21 / 5$ becomes $2 \times 5=10+1=11 / 5$
$\frac{7}{2} \times \frac{11}{5}=$ \qquad
2. Multiply the numerators, and then multiply the denominators.
$\frac{7}{2} \times \frac{11}{5}=\frac{77}{10}$
3. Change the product (answer), which is an improper fraction, to a mixed number by dividing the denominator into the numerator, and then reduce to lowest terms.

$$
\frac{7}{2} \times \frac{11}{5}=\frac{77}{10}=7 \frac{7}{10}
$$

Multiply the following:
a. $1 \frac{2}{3} \times \frac{3}{6}=$ \qquad
b. $1 \frac{7}{8} \times 1 \frac{1}{4}=$

Division

Dividing Fractions

1. Change the division sign to a multiplication sign.
2. Invert the divisor, which is the number after the division sign.
3. Reduce the fractions with the use of cancellation.
4. Multiply the numerators and the denominators.

EXAMPLE

$4 \div \frac{1}{2}=$ \qquad

$$
4 \div \frac{1}{2}=\frac{4}{1} \times \frac{2}{1}=\frac{8}{1}=8
$$

Dividing With a Mixed Number

1. Change the mixed number to an improper fraction.
2. Change the division sign to a multiplication sign.
3. Invert the divisor.
4. Reduce whenever possible.

EXAMPLE

$$
\begin{aligned}
& 4 \frac{1}{2} \div \frac{3}{4}=\frac{9}{2} \div \frac{3}{4}=\frac{3}{2} \times \frac{3}{2} \times \frac{4}{8}=\frac{6}{1} \text { or } 6 \\
& 6 \frac{1}{4} \div 1 \frac{1}{4}=\frac{25}{4} \div \frac{5}{4}=\frac{25}{4} \times \frac{4}{8}=\frac{5}{1} \text { or } 5
\end{aligned}
$$

Fractions as Decimals

A fraction can be changed to a decimal form by dividing the numerator by the denominator.

EXAMPLE

$$
\frac { 1 } { 2 } = 2 \longdiv { 0 . 5 }
$$

Change the following fractions to decimals:
a. $\frac{1}{100}=$ \qquad
b. $\frac{5}{8}=$ \qquad
c. $\frac{1}{2}=$ \qquad

Using Cancellation to Speed Your Work

1. Determine a number that will divide evenly into both the numerator and the denominator.
2. Continue the process of dividing both the numerator and the denominator by the same number until all numbers are reduced to lowest terms.
3. Complete the multiplication of the problem.

EXAMPLE

$\frac{1}{6} \times \frac{3}{9}=$ \qquad
$\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}$
4. Complete the division of the problem.

EXAMPLE

$\frac{6}{9} \div \frac{5}{8}=$
(Change the division sign to a multiplication sign, invert the divisor, reduce, and then complete the multiplication of the problem.)
$\frac{2}{3} \times \frac{8}{5}=\frac{16}{15}=1 \frac{1}{15}$

DECIMAL FRACTIONS

Objectives

2. Demonstrate proficiency performing mathematic problems that involve the addition, subtraction, multiplication, and division of decimals.
3. Convert decimals to fractions and fractions to decimals.

When fractions are written in decimal form, the denominators are not written. The word decimal means "10." When reading decimals, the numbers to the left of the decimal point are whole numbers. It may help to think of them as whole dollars. Numbers to the right of the decimal are fractions of the whole number and may be thought of as cents.

EXAMPLE

$$
\begin{aligned}
1.0 & =\text { one } \\
11.0 & =\text { eleven } \\
111.0 & =\text { one hundred eleven } \\
1111.0 & =\text { one thousand one hundred eleven }
\end{aligned}
$$

Numbers to the right of the decimal point are read as follows:

EXAMPLE

Decimals

0.1 = one tenth
$0.01=$ one hundredth
$0.465=$ four hundred sixty-five thousandths
$0.0007=$ seven ten thousandths

Fractions

$\frac{1}{10}$
$\frac{1}{100}$
$\frac{465}{1000}$
$\frac{7}{10,000}$

Here is another way to view the reading of decimals:

1 equals one-tenth ($1 / 10$)

- 22 equals twenty-two hundredths (22/100)
112 equals one hundred twelve thousandths (112/1000)
$\begin{array}{llll}0 & 1 & 1 & 2 \text { equals one hundred twelve }\end{array}$ ten thousandths $(112 / 10,000)$
1 . equals number one
10 . equals number ten
100 . equals number one hundred
$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$. equals number one thousand

EXAMPLE

(Note: Hospital policy now recommends that 1.000 g be written as " 1 g " to avoid error. Often, the decimal point is not recognized, and very large doses have been accidentally administered. The rule is as follows: "Don't use trailing 0 s to the right of decimal points.")

$$
250 \mathrm{mg}=0.250 \mathrm{~g}
$$

MULTIPLYING DECIMALS

Multiplying Whole Numbers and Decimals

1. Count as many places in the answer, starting from the right, as there are places in the decimal that is involved in the multiplication.
2. The multiplier is the bottom number with the \times (i.e., the multiplication sign) in front of it.
3. The multiplicand is the top number.

EXAMPLES

$$
\begin{array}{rcccc}
500 & 1000 & 1000 & 7.25 & 500 \\
\times 0.02 \\
\hline 10.00(10) & \times 0.04 \\
\hline 40.00(40) & \begin{aligned}
\times 0.009 & \times 4 \\
9.000 & (9)
\end{aligned} & 29.00(29) & \times 0.009 \\
\hline 4.500(5)
\end{array}
$$

Rounding the Answer

Note in the last example that the first number after the decimal point in the answer is 5 . Instead of the answer remaining 4.5 , it becomes the next whole number, which is 5 . This would be true if the answer were 4.5 , 4.6, 4.7, 4.8, or 4.9. In each case, the answer would become 5. If the answer were $4.1,4.2,4.3$, or 4.4 , the answer would remain 4 .

When the first number after the decimal point is 5 or above, the answer becomes the next whole number. When the first number after the decimal point is less than 5 , the answer becomes the whole number in the answer.

Multiply the following:
a. $1200 \times 0.009=$ \qquad
b. $575 \times 0.02=$ \qquad
c. $515 \times 0.02=$ \qquad
d. $510 \times 0.04=$ \qquad

Multiplying a Decimal by a Decimal

1. Multiply the problem as if the numbers were both whole numbers.
2. Count the decimal places in the answer, starting from the right, to equal the total of the decimal places in both of the numbers that are multiplied.

EXAMPLE
3.75
$\times 0.5$
1.875

There are two decimal places in 3.75 and one decimal place in 0.5 , which means that the answer should have a total of three decimal places. Count three decimal places from the right.

Multiplying Numbers With Zero EXAMPLES

1. Multiply 223 by 40.
a. Multiply 223 by 0 . Write the answer (0) in the unit column of the answer.
b. Then multiply 223 by 4 . Write this answer in front of the 0 in the product.

$$
\begin{array}{r}
223 \\
\times \quad 40 \\
\hline 8920
\end{array}
$$

2. Multiply 124 by 304 .
a. First, multiply 124 by 4 . The answer is 496 .
b. Now multiply 124 by 0 . Write the answer (0) under the 9 in 496.
c. Multiply 124 by 3 . Write this answer in front of the 0 in the product.

$$
\begin{array}{r}
124 \\
\times 304 \\
\hline 496 \\
3720 \\
\hline 37,696
\end{array}
$$

DIVIDING DECIMALS

1. If the divisor (i.e., the number by which you divide) is a decimal, make it a whole number by moving the decimal point to the right of the last figure.
2. Move the decimal point in the dividend (i.e., the number inside the bracket) as many places to the right as you moved the decimal point in the divisor.
3. Place the decimal point for the quotient (i.e., the answer) directly above the new decimal point of the dividend.
EXAMPLES
$0 . 2 5 \longdiv { 1 0 } = 2 5 \longdiv { 1 0 0 0 . }$
$0 . 3 \longdiv { 9 9 . 3 } = 3 \longdiv { 9 3 1 . }$
$0 . 4 \longdiv { 1 . 6 8 } = 4 \longdiv { \frac { 4 . 2 } { 1 6 . 8 } }$

CHANGING DECIMALS TO COMMON FRACTIONS

1. Remove the decimal point.
2. Place the appropriate denominator under the number.
3. Reduce to lowest terms.

EXAMPLES

$0.2=\frac{2}{10}=\frac{1}{5}$
$0.2=\frac{20}{100}=\frac{1}{5}$
Change the following:
a. $0.3=$ \qquad
b. $0.4=$ \qquad
c. $0.5=$ \qquad
d. $0.05=$ \qquad
e. $0.25=$ \qquad
f. $0.50=$ \qquad
g. $0.75=$ \qquad
h. $0.002=$ \qquad

CHANGING COMMON FRACTIONS
 TO DECIMAL FRACTIONS

Divide the numerator of the fraction by the denominator.

EXAMPLE

$\frac{1}{4}$ means $1 \div 4$ or $4 \longdiv { 0 . 2 5 }$
Change the following:
a. $1 / 2$ means \qquad
b. $1 / 6$ means \qquad
c. $2 / 3$ means \qquad
d. $3 / 4$ means \qquad
e. $1 / 50$ means \qquad

PERCENTS

Objective

4. Convert percents to fractions, percents to decimals, decimal fractions to percents, and common fractions to percents.

DETERMINING THE PERCENT THAT ONE NUMBER IS OF ANOTHER

1. Divide the smaller number by the larger number.
2. Multiply the quotient by 100, and then add the percent sign.

EXAMPLE

A certain 1000-part solution is 10 parts drug. What percent of the solution is drug?

$$
1 0 0 0 \longdiv { 0 . 0 1 }
$$

$0.01 \times 100=1$. or 1%

CHANGING PERCENTS TO FRACTIONS

1. Omit the percent sign to form the numerator.
2. Use 100 for the denominator.
3. Reduce the fraction.

EXAMPLES

$5 \%=\frac{5}{100}=\frac{1}{20}$
$75 \%=\frac{75}{100}=\frac{3}{4}$
Change the following:
a. $25 \%=\frac{25}{100}=$ \qquad
b. $15 \%=\frac{15}{100}=$ \qquad
c. $10 \%=\frac{10}{100}=$ \qquad
d. $20 \%=\frac{20}{100}=$ \qquad
e. $50 \%=\frac{50}{100}=$ \qquad
f. $2 \%=\frac{2}{100}=$ \qquad
g. $12 \frac{1}{2} \%=\frac{12.5}{100}=$ \qquad
h. $\frac{1}{4} \%=\frac{\frac{1}{4}}{100}=$ \qquad
i. $150 \%=\frac{150}{100}=$ \qquad
j. $4 \%=\frac{4}{100}=$

CHANGING PERCENTS TO DECIMAL FRACTIONS

1. Omit the percent signs.
2. Insert a decimal point two places to the left of the last number, or express the number as hundredths as a decimal.

EXAMPLES

$5 \%=0.05$
$15 \%=0.15$
Change the following:
a. $4 \%=$ \qquad
b. $1 \%=$ \qquad
c. $2 \%=$ \qquad
d. $25 \%=$ \qquad
e. $50 \%=$ \qquad
f. $10 \%=$ \qquad
Note that, in these examples, those numbers that were already hundredths (i.e., $10 \%, 15 \%, 25 \%, 50 \%$) merely need to have the decimal point placed in front of the first number, because they are already expressed in hundredths, whereas $1 \%, 2 \%, 4 \%$, and 5% needed to have a zero placed in front of the number to express them as hundredths.

Change these percents to decimal fractions:

$$
\begin{aligned}
& \text { g. } 12 \frac{1}{2} \%= \\
& \text { h. } \quad 1 / 4 \%=
\end{aligned}
$$

If the percent is a mixed number, it should have the fraction expressed as a decimal. Then, change the percent to a decimal by moving the decimal point two places to the left.

CHANGING COMMON FRACTIONS TO PERCENTS

1. Divide the numerator by the denominator.
2. Multiply the quotient by 100, and then add the percent sign.
EXAMPLE
$\frac { 1 } { 5 0 } = 5 0 \longdiv { 1 . 0 0 } = 0 . 0 2 \times 1 0 0 = 2 \%$

Change the following:
a. $\frac{1}{400}=$ \qquad
b. $\frac{1}{8}=$ \qquad

CHANGING DECIMAL FRACTIONS TO PERCENTS

1. Move the decimal point two places to the right.
2. Omit the decimal point if a whole number results.
3. Add the percent signs. (This is the same as multiplying the decimal fraction by 100 and then adding the percent sign.)

EXAMPLE

$$
0.01=1.00=1 \%\left(\text { or } \frac{1}{100}\right)
$$

Change the following:
a. $\quad 0.05=$ \qquad
b. $0.25=$ \qquad
c. $\quad 0.15=$ \qquad
d. $0.125=$ \qquad
e. $0.0025=$ \qquad

POINTS TO REMEMBER WHEN READING DECIMALS

1. Remember that " 1. " is the whole number 1 . When it is written " 1.0, " it is still one or 1 .
2. The whole number is usually written like this: 1,2 , 3,4 , and so on. (Remember, do not use trailing 0s.)
3. Can you read this one? 0.1. This is one tenth. There is one number after the decimal point.
4. Can you read this one? .1. This is also one tenth. The zero in front of the decimal point does not change its value. Thus, one tenth can be written in two ways: 0.1 and .1. (The leading 0 to the left of the decimal should be used to help prevent errors.)

RATIOS

Objective

5. Demonstrate proficiency with converting ratios to percentages and percentages to ratios, with simplifying ratios, and with the use of the proportion method for solving problems.

A ratio expresses the relationship that one quantity bears to another.

EXAMPLES

1:5 means 1 part of a drug to 5 parts of a solution.
1:100 means 1 part of a drug to 100 parts of a solution.
1:500 means 1 part of a drug to 500 parts of a solution.
A common fraction can be expressed as a ratio.

EXAMPLE

$1 / 5$ is the same as $1: 5$.
The ratio of one amount to an amount expressed in terms of the same unit is the number of units in the first divided by the number of units in the second. The ratio of 2 ounces of a disinfectant to 10 ounces of water is 2 to 10 or 1 to 5 . This ratio may be written as $1: 5$.
The two numbers being compared are referred to with the use of the term ratio. The first term of a true ratio is always one or 1 . This is the simplest form of a ratio.

CHANGING RATIO TO PERCENT

1. Make the first term of the ratio the numerator of a fraction; the denominator is the second term of the ratio.
2. Divide the numerator by the denominator.
3. Multiply by 100 , and then add the percent sign. Change the following:
a. $1: 5=$ \qquad

CHANGING PERCENT TO RATIO

1. Change the percent to a fraction, and then reduce the fraction to lowest terms.
2. The numerator of the fraction is the first term of the ratio, and the denominator is the second term of the ratio.

EXAMPLE

$$
\begin{aligned}
\frac{1}{2} \% & =\frac{\frac{1}{2}}{100}=\frac{1}{2} \div \frac{100}{1} \\
& =\frac{1}{2} \times \frac{1}{100}=\frac{1}{200}=1: 200
\end{aligned}
$$

Change the following:
a. $2 \%=$ \qquad
b. $50 \%=$ \qquad
c. $75 \%=$ \qquad

SIMPLIFYING RATIOS

Ratios can be simplified as ratios or as fractions.

EXAMPLE

$25: 100=1: 4$ or $\frac{25}{100}=\frac{1}{4}$
Simplify the following:
a. $4: 12=$ \qquad
b. $5: 10=$ \qquad
c. $10: 5=$ \qquad
d. $75: 100=$ \qquad
e. $1 / 4: 100=$ \qquad
f. $15: 20=$ \qquad
g. $3: 9=$

PROPORTIONS

A proportion shows how two equal ratios are related. This method works well because it is possible to prove that your answer is correct, and it is especially useful when working with solution concentrations.

1. Three factors are known. The fourth unknown (i.e., what you are looking for) is represented by x.
2. The first and fourth terms of a proportion are called the extremes; the second and third are called the means. The product of the means equals the product of the extremes; in other words, multiplying the first and fourth terms produces a result that is equal to the result of multiplying the second and third terms.

EXAMPLE

Proof: $1 \times 4=4$ and $2 \times 2=4$
If you did not know one number, you could solve for it as follows:

EXAMPLE

$1: 2=2: x$
$1 x=4$
$x=4 \times 1=4$
$x=4$
Proof: $1 \times 4=4$ and $2 \times 2=4$
Solve the following:
a. $9: x:: 5: 300=$ \qquad
b. $x: 60:: 4: 120=$ \qquad
c. $5: 3000:: 15: x=$ \qquad
d. $0.7: 70:: x: 1000=$ \qquad
e. $1 / 400: x:: 2: 1600=$ \qquad
f. $0.2: 8:: x: 20=$ \qquad
g. $100,000: 3:: 1,000,000: x=$ \qquad
h. $1 / 4: x:: 20: 400=$ \qquad
(Note: x is the unknown factor. It may be a mean or an extreme, and it may be in any of the four positions in any problem.)

SYSTEMS OF WEIGHTS AND MEASURES

Objectives

6. Memorize the basic equivalents of the household and metric systems.
7. Demonstrate proficiency performing conversion of medication problems with the use of the household and metric systems.

Key Terms
household measurements (HǑWS-hōld MĚ-zhǔr-měnts)
metric system (MĚT-rǐk)
meter (MĒ-tŭr)
liter (LĒ-tǔr)
gram (GRĂM)
milligrams (MǏL-ĭ-grămz)
kilograms (KILL-i-grămz)

Two systems of measurement are used during the calculation, preparation, and administration of medicines: household and metric.

HOUSEHOLD MEASUREMENTS

Household measurements are often used to administer pharmacologic agents at home; however, they are less accurate. The patient has probably grown up using this system of measurement and therefore understands it best. Household measurements include drops, teaspoons, tablespoons, teacups, cups, glasses, pints, quarts, and gallons. The first three measurementsdrops, teaspoons, and tablespoons-are used for medications, depending on the amount prescribed.

Common Household Equivalents

$$
\begin{aligned}
1 \text { quart } & =4 \text { cups } \\
1 \text { pint } & =2 \text { cups } \\
1 \text { cup } & =8 \text { ounces } \\
1 \text { teacup } & =6 \text { ounces } \\
1 \text { tablespoon } & =3 \text { teaspoons } \\
1 \text { teaspoon } & =\text { approximately } 5 \mathrm{~mL}
\end{aligned}
$$

METRIC SYSTEM

The metric system was invented in France during the late eighteenth century. A committee of the Academy of Sciences, working under government authority, recommended a standard unit of linear measure. For a basis of measurement, they chose a quarter of the earth's circumference as measured across the poles. One ten-millionth of this distance was accepted as the standard unit of linear measure. The committee calculated the distance from the equator to the North Pole from surveys that had been made along the meridian that passes through Paris. The distance divided by $10,000,000$ was chosen as the unit of length, and this was called the meter.

The metric standards were adopted in France in 1799. The International Metric Convention met in Paris in 1875, and, as a result of this meeting, the International Bureau of Weights and Measures was formed. The bureau's first task was to construct an international standard meter bar and an international standard kilogram weight. Duplicates of these were made for all countries that participated in the convention.

A measurement line was selected on the international standard meter bar. The distance between the

FIGURE 6-1 A graduated cylinder is used to measure the volume of liquids.
two lines of measurement on the bar is the official unit of the metric system. The standards given to the United States are preserved at the National Institute of Standards and Technology in Gaithersburg, Md . There are 25.4 millimeters (mm) in 1 inch (2.5 centimeters [cm]).

The metric system uses the meter as the unit of length, the liter as the unit of volume (Figure 6-1), and the gram as the unit of weight.

Units of Length (Meter)

1 millimeter $=0.001$
meaning $1 / 1000$
1 centimeter $=0.0$
1 decimeter $=0.1$
1 meter = 1
meaning 1/100
meaning $1 / 10$
meter

Units of Volume (Liter)

1 milliliter $=0.001 \quad$ meaning $1 / 1000$
1 centiliter $=0.01 \quad$ meaning $1 / 100$
1 deciliter $=0.1 \quad$ meaning $1 / 10$
1 liter $=1$
liter

Units of Weight (Gram)

1 microgram $=0.000001$
1 milligram $=0.001$
1 centigram $=0.01$
1 decigram $=0.1$
1 gram = 1
meaning $11 / 1,000,000$
meaning 1⁄1000
meaning $1 / 100$ meaning $1 / 10$
gram

Other Prefixes

Deca- means ten or 10 times as much. Hecto- means one hundred or 100 times as much. Kilo- means one thousand or 1000 times as much. These three prefixes can be combined with the words meter, gram, and liter.

EXAMPLES

1 decaliter = 10 liters
1 hectometer $=100$ meters
1 kilogram = 1000 grams

EXAMPLES

500 milligrams, 5 grams, 15 milliliters
Prefixes that are added to units (i.e., meters, liters, grams) indicate smaller or larger units. All units are derived by dividing or multiplying by 10,100 , or 1000 .

Common Metric Equivalents

1 milliliter (mL) $=1$ cubic centimeter (cc) 1000 milliliters $(\mathrm{mL})=1$ liter (L) $=1000$ cubic centimeters (cc) 1000 milligrams $(\mathrm{mg})=1 \mathrm{gram}(\mathrm{g})$
1000 micrograms $(\mathrm{mcg})=1$ milligram (mg)
$1,000,000$ micrograms $(\mathrm{mcg})=1 \mathrm{gram}(\mathrm{g})$ 1000 grams (g) = 1 kilogram (kg)

Differentiate between metric weight and metric volume. Mark each of the following; use MW for metric weight or $M V$ for metric volume.
a. microgram $=$ \qquad
b. milliliter $=$ \qquad
c. liter $=$ \qquad
d. gram $=$ \qquad

CONVERSION OF METRIC UNITS

The first step in calculating a drug dosage is to make sure that the drug ordered and the drug source on hand are both in the same system of measurement (preferably the metric system) and in the same unit of weight (e.g., both milligrams or both grams).

Converting Milligrams (Metric) to Grams

(Metric) ($1000 \mathrm{mg}=1 \mathrm{~g}$)

Divide the number of milligrams by 1000, or move the decimal point of the milligrams three places to the left.

EXAMPLES

$200 \mathrm{mg}=0.2 \mathrm{~g}$
$0.6 \mathrm{mg}=0.0006 \mathrm{~g}$
Convert the following milligrams to grams:
a. $0.4 \mathrm{mg}=$ \qquad
b. $0.12 \mathrm{mg}=$ \qquad g
c. $0.2 \mathrm{mg}=\ldots \mathrm{g}$
d. $0.1 \mathrm{mg}=_\mathrm{g}$
e. $500 \mathrm{mg}=\ldots \mathrm{g}$
f. $125 \mathrm{mg}=\ldots \mathrm{g}$
g. $100 \mathrm{mg}=\ldots \mathrm{g}$
h. $200 \mathrm{mg}=\quad \mathrm{g}$
i. $50 \mathrm{mg}=\ldots \mathrm{g}$
j. $400 \mathrm{mg}=\quad \mathrm{g}$

Convert the following grams (g) to milligrams (mg):
k. $0.2 \mathrm{~g}=$ \qquad mg

1. $0.250 \mathrm{~g}=$ \qquad mg
m. $0.125 \mathrm{~g}=\ldots \mathrm{mg}$
n. $0.0006 \mathrm{~g}=$ \qquad mg
o. $0.004 \mathrm{~g}=$ \qquad mg
In the following example, both the health care provider's order and the medication available are in the metric system. However, they are not both in the same unit of weight of the metric system.

EXAMPLES

The health care provider orders that the patient receive 0.25 g of a drug. The label on the bottle of medicine says 250 mg , which means that each capsule contains 250 mg of the drug.
To change the gram dose into milligrams, multiply 0.25 by 1000 , and then move the decimal point three places to the right (a milligram is one thousandth of a gram). When you do this, you find that $0.250 \mathrm{~g}=250 \mathrm{mg}$, so you would give one capsule of the drug.
Try this one: The health care provider orders the patient to have 0.1 g of a drug. The label on the bottle states that the strength of the drug is 100 mg /capsule.
To change the gram dose into milligrams, move the decimal point three places to the right. You will see that $0.1 \mathrm{~g}=100 \mathrm{mg}$, which is exactly what the bottle-label strength states.

Solid Dosage for Oral Administration

If the dosage on hand and the dosage ordered are both in the same system and in the same unit of weight, proceed to calculate the dosage with the use of one of these methods.

EXAMPLES

A health care provider orders that a patient receive 1 g of ampicillin. The ampicillin bottle states that each tablet in the bottle contains 0.5 g .
Problem: You do not have the 1 g as ordered. How many tablets will you give? (Both the amount ordered and the amount available are in the same system of measurement [metric] and the same unit of weight [grams]).
Solution: You may use two methods.

Method 1:

$\frac{\text { Dose desired }}{\text { Dose on hand }}=\frac{1.0 \mathrm{~g}}{0.5 \mathrm{~g}}=2$
(You will give two 0.5-g tablets to give the patient the 1.0 g that was ordered.)
Method 2 (Proportional):
Metric dosage ordered: drug form
Metric dosage available: drug form
$1.0 \mathrm{~g}: x$ tablets $:: 0.5 \mathrm{~g}: 1$ tablet
(means) $=$ (extremes)
$0.5 x=1.0 \mathrm{~g}$
$x=2$ tablets

Proof:
Product of means: 2 (value of x) $\times 0.5=1$
Product of extremes: $1 \times 1=1$
If the dosage on hand and the dosage ordered are both in the same system of measurement but if they are not in the same unit of weight within the system, then the units of weight must first be converted.

EXAMPLES

The health care provider orders 1000 milligrams (metric) of ampicillin. The medication on hand contains 0.25 g (metric) per tablet.
Rule: Convert grams (metric) to milligrams (metric) (1 g $=1000 \mathrm{mg}$): Multiply the number of grams by 1000, and then move the decimal point of the grams three places to the right: $0.25 \mathrm{~g}=250 \mathrm{mg}$.
Solution:
$\frac{\text { Dose desired }}{\text { Dose on hand }}=\frac{1000 \mathrm{mg}}{250 \mathrm{mg}}=4 \quad$ (Give four 0.25-g tablets.)
$\frac{\mathrm{mg}}{250}: \frac{\text { tablet }}{1}:: \frac{\mathrm{mg}}{1000}: \frac{\text { tablet }}{x}$
$x=\frac{1000}{250}=4$ tablets
Proof:
Product of means: $1 \times 1000=1000$
Product of extremes: $250 \times 4=($ value of $x)=1000$

Conversion Problems

Some students understand problems that involve tablet or capsule dosage for oral administration if they are presented with their fractional equivalents.

EXAMPLES

1. A health care provider orders that a patient receive 2 g of a drug in oral tablet form. The label on the medicine bottle states that the strength on hand is 0.5 g . This means that each tablet in the bottle is $0.5-\mathrm{g}$ strength. How many tablets would be given to the patient? 1, 2, 3, 4, or 5? Answer: 4
What strength is ordered? 2 g
What strength is on the bottle label? 0.5 g
What is the fractional equivalent of 0.5 g ? $1 / 2 \mathrm{~g}$
How many $1 / 2-\mathrm{g}(0.5-\mathrm{g})$ tablets would equal 2 g ? 4
$2 \div \frac{1}{2}=\frac{2}{1} \times \frac{2}{1}=4$ tablets
2. A health care provider orders that a patient receive 0.2 mg of a drug in oral tablet form. The label on the medicine bottle states that the strength on hand is 0.1 mg . This means that each tablet in the bottle is $0.1-\mathrm{mg}$ strength.
How many tablets would be given to the patient? 1, 2, 3, or 4? Answer: 2 tablets
What strength is ordered? 0.2 mg
What is the fractional equivalent of 0.2 mg ? 2/10
What strength is on the bottle label (on hand)? 0.1 mg What is the fractional equivalent of 0.1 mg ? $1 / 10$

How many $1 / 10-\mathrm{mg}(0.1-\mathrm{mg})$ tablets would equal $2 / 10 \mathrm{mg}$ $(0.2 \mathrm{mg}) ? 2$
$0.1 \mathrm{mg}=1 / 10 \mathrm{mg}$ or 1 tablet
$\frac{+0.1 \mathrm{mg}=1 / 10 \mathrm{mg} \text { or } 1 \text { tablet }}{0.2 \mathrm{mg}=2 / 10 \mathrm{mg} \text { or } 2 \text { tablets }}$
Dosage desired \div Dosage on hand $=$
or $\frac{2}{10} \div \frac{1}{10}=\frac{2}{10} \times \frac{10}{1}=2$ tablets
3. A health care provider orders a patient to receive 0.5 mg of a drug in oral capsule form. The label on the medicine bottle states that the strength on hand is 0.25 mg . This means that each capsule in the bottle is $0.25-\mathrm{mg}$ strength. How many tablets would be given to the patient? 1, 2, 3, 4, or 5? Answer: 2 tablets
What strength is ordered? 0.5 mg
What fractional equivalent equals 0.5 mg ? $1 / 2 \mathrm{mg}$
What strength is on the bottle label? 0.25 mg
What fractional equivalent equals the strength on hand? $1 / 4 \mathrm{mg}$
How many $1 / 4-\mathrm{mg}(0.25-\mathrm{mg})$ tablets would equal $1 / 2$ $\mathrm{mg}(0.5 \mathrm{mg}) ? 2$
$0.25 \mathrm{mg}=1 / 4 \mathrm{mg}$ or 1 tablet
$\begin{aligned}+0.25 \mathrm{mg} & =1 / 4 \mathrm{mg} \text { or } 1 \text { tablet } \\ 0.50 \mathrm{mg} & =1 / 2 \mathrm{mg} \text { or } 2 \text { tablets }\end{aligned}$
Dosage desired \div dosage on hand $=$
or $\frac{1}{2} \div \frac{1}{4}=\frac{1}{2} \times \frac{4}{1}=2$ tablets
4. A health care provider orders a patient to receive 0.25 mg of a drug in oral tablet form. The label on the medicine bottle states that the strength on hand is 0.5 mg . This means that every tablet in the bottle is $0.5-\mathrm{mg}$ strength.

How many tablets would be given? $1 / 2,1,1 \frac{1}{2}, 2,21 / 2$, 3, 4, or 5? Answer: $1 / 2$ tablet

What strength did the health care provider order? 0.25 mg

What is the fractional equivalent of the strength that the health care provider ordered? $1 / 4 \mathrm{mg}$
What strength is on the bottle label? 0.5 mg
What is the fractional equivalent of the strength on the bottle label (on hand)? $1 / 2 \mathrm{mg}$
Which is less: $0.5 \mathrm{mg}(1 / 2 \mathrm{mg})$ or $0.25 \mathrm{mg}(1 / 4 \mathrm{mg})$? $0.25 \mathrm{mg}(1 / 4 \mathrm{mg})$
Was the amount ordered more or less than the strength on hand? Less
$0.5 \mathrm{mg}=\frac{1}{2} \mathrm{mg}$ or 1 tablet
$0.25 \mathrm{mg}=\frac{1}{4} \mathrm{mg}$ or half as much or $\frac{1}{2}$ tablet
or $\frac{1}{4} \div \frac{1}{2}=\frac{1}{4} \times \frac{2}{1}=\frac{1}{2}$ tablet

If the medication is also available in $0.25-\mathrm{mg}$ tablets, request that size from the pharmacy. A tablet should be divided only when it is scored; even then, the practice is not advised, because the tablet often fragments into unequal pieces.

Converting Pounds to Kilograms ($\mathbf{1} \mathbf{~ k g = 2 . 2 ~ l b) ~}$

Many health care providers request that the metric measure be used to record the body weight of the patient. Because the scales that are used in many hospitals are calibrated in pounds, conversion from pounds to kilograms is required.

1. To convert weight from kilograms to pounds, multiply the kilogram weight by 2.2.

EXAMPLE

$25 \mathrm{~kg} \times 2.2 \mathrm{lb} / \mathrm{kg}=55 \mathrm{lb}$
Convert the following:
a. $35 \mathrm{~kg}=$ \qquad lb
b. $16 \mathrm{~kg}=$ \qquad lb
c. $65 \mathrm{~kg}=$ \qquad lb
2. To convert weight from pounds to kilograms, divide the weight in pounds by 2.2.

EXAMPLE

$140 \mathrm{lb} \div 2.2 \mathrm{~kg} / \mathrm{lb}=63.6 \mathrm{~kg}$
Convert the following:
d. $125 \mathrm{lb}=\ldots \mathrm{kg}$
e. $9 \mathrm{lb}=\ldots \mathrm{kg}$
f. $180 \mathrm{lb}=\ldots \quad \mathrm{kg}$

The weight of a liter of water at $40^{\circ} \mathrm{C}$ is 2.2 pounds.

CALCULATING DOSAGE RANGES FOR MG/KG/DAY

Acceptable doses of medications are often published in a dosage range. It is the nurse's responsibility to confirm that a dosage ordered fits within the acceptable dosage range.

EXAMPLE

A health care provider gives the following order: Administer 3 mL of amoxicillin for oral suspension, $250 \mathrm{mg} / 5 \mathrm{~mL}$ every 8 hours, to a child weighing 40 pounds. (The amoxicillin dosage range is 20 to 40 mg / $\mathrm{kg} /$ day. This dosage is to be given in divided doses every 8 hours, which is a total of three doses per day.)
Convert the child's weight in pounds to kilograms:

$$
40 \mathrm{lb} /(2.2 \mathrm{~kg} / \mathrm{lb})=18.2 \mathrm{~kg}
$$

Calculate the lower dosage:

$$
20 \mathrm{mg} \times 18.2 \mathrm{~kg}=364 \mathrm{mg} / \text { day }
$$

Calculate the upper dosage:

$$
40 \mathrm{mg} \times 18.2 \mathrm{~kg}=728 \mathrm{mg} / \text { day }
$$

The recommended range for this child is 364 to 728 mg / day. The drug is to be given in three divided doses.

Lower dosage: $364 \div 3=121 \mathrm{mg}$ per dose
Upper dosage: $728 \div 3=243 \mathrm{mg}$ per dose
The per-dosage range is 121 to 243 mg per dose every 8 hours. Amoxicillin oral suspension is available as $250 \mathrm{mg} / 5 \mathrm{~mL}$. Calculate the volume to be administered:

$$
\begin{aligned}
& 250 \mathrm{mg}: 5 \mathrm{~mL}=121 \mathrm{mg}: x \\
& x=2.4 \mathrm{~mL} \\
& 250 \mathrm{mg}: 5 \mathrm{~mL}=243 \mathrm{mg}: x \\
& x=4.9 \mathrm{~mL}
\end{aligned}
$$

The dosage ordered (3 mL of amoxicillin at $250 \mathrm{mg} / 5 \mathrm{~mL}$) is an acceptable dose because it fits within the range of 2.4 to 4.9 mL (or 121 to 243 mg per dose). Use an oral syringe to measure 3 mL for accurate administration.

CALCULATIONS WITH OTHER FORMS OF MEASURE THAT DO NOT REQUIRE CONVERSIONS

Other forms of measure that are often used in medicine are the "unit" and the "milliequivalent." There are no conversions used with units or milliequivalent (mEq), because the medication ordered and the medication available are expressed in the same system of measurement. Units and milliequivalent quantities are stated in Arabic numbers, with the terms units or $m E q$ placed after them. Some medications (e.g., insulin, heparin, penicillin) are measured in units and are available as a standardized quantity of drug per volume (e.g., 100 units/mL of insulin, 1000 units/mL of heparin). It is important to read each medication label carefully, because the term unit can vary among drugs that are measured in this manner.

EXAMPLE 1

Heparin sodium injection, USP, can be supplied as 10 units, 100 units, 1000 units, 2500 units, 5000 units, 7500 units, 10,000 units, 20,000 units, 40,000 units $/ \mathrm{mL}$, and 25,000 units/ 500 mL .
Medication Problem: Health care provider's order: Heparin sodium, 8000 units subcut q12h
Available: Heparin sodium, 10,000 units/mL
What volume of heparin will you administer? (Remember to have all heparin dosages checked by a second qualified individual in accordance with clinical policy.)
Formula: Desired amount : x (desired volume) $=$ Drug strength available : volume
8000 units: x (desired volume) $=10,000$ units: 1 mL
Multiply means: $(10,000$ units $)(x)=10,000$ units- x
Multiply extremes: $(8000$ units $)(1 \mathrm{~mL})=8000$ units-mL 10,000 units- $x=8000$ units-mL
Reduce: $x=\frac{8000 \text { units } \mathrm{mL}}{10,000 \text { units }}=\frac{8 \mathrm{~mL}}{10}=0.8 \mathrm{~mL}$

EXAMPLE 2

Insulins: Insulins (e.g., aspart, lispro, regular, NPH, 70/30, glargine) are supplied as 100 units $/ \mathrm{mL}$.

Medication Problem: Health care provider's order: Regular insulin 7 units subcut at 7 Am and 12 noon + regular insulin by sliding supplemental scale based on 6:45 AM and 11:45 am blood glucose levels.

Sliding Supplemental Scale Insulin Dosage

- Blood glucose <60 = give two glasses of orange juice; call health care provider; repeat glucose monitoring 30 minutes after giving juice
- Blood glucose $\geq 100-150=$ no additional insulin
- Blood glucose $\geq 151-200=1$ unit regular insulin
- Blood glucose $\geq 201-250=2$ units regular insulin
- Blood glucose $\geq 251-300=3$ units regular insulin
- Blood glucose $\geq 301-350=4$ units regular insulin
- Blood glucose $>350=5$ units regular insulin, subcut; call health care provider; order blood glucose to be drawn

EXAMPLE

If the blood glucose level at 6:45 AM is $258 \mathrm{mg} / \mathrm{dL}$, how much sliding supplemental scale insulin would be required in addition to the prescribed dose of regular insulin of 7 units daily at 7 Am ?

Answer: At 7 Am, the patient would receive 7 units (daily dose) plus 3 units (sliding scale) for a total of 10 units of regular insulin.
What volume of insulin will be administered? (Remember to have all insulin dosages checked by a second qualified individual in accordance with clinic policy.)
Available: Regular insulin, 100 units/mL
Formula: Desired amount : x (desired volume) $=$ Drug strength available : volume
10 units : x (desired volume) $=100$ units: 1 mL
Multiply means: $(100$ units) $(x)=100$ units- x
Multiply extremes: $(10$ units $)(1 \mathrm{~mL})=10$ units-mL
100 units- $x=10$ units-mL
Reduce : $x=\frac{10 \text { tuits } \mathrm{mL}}{100 \text { units }}=0.1 \mathrm{~mL}$ regular insulin
At 11:30 AM, before lunch, the patient's glucose meter reading is $321 \mathrm{mg} / \mathrm{dL}$. According to the sliding scale given, how much regular insulin should be given?
Answer: 11 units of regular insulin (7 units ordered +4 units from sliding supplemental scale)
What volume of insulin will you administer? (Remember to have all insulin dosages checked by a second qualified individual in accordance with clinic policy.)
Available: Regular insulin, 100 units/mL
Formula: Desired amount : x (desired volume) $=$ Drug strength available : volume
11 units : x (desired volume) $=100$ units: 1 mL
Multiply means: $(100$ units $)(x)=100$ units- x
Multiply extremes: $(11$ units $)(1 \mathrm{~mL})=11$ units-mL
100 units- $x=11$ units-mL

Reduce : $x=\frac{11 \text { units } \mathrm{mL}}{100 \text { units }}=0.11 \mathrm{~mL}$ regular insulin

EXAMPLE 3

Procaine penicillin is supplied as 300,000 units, 500,000 units, and 600,000 units/mL.
Medication Problem: Health care provider's order: Procaine penicillin, 400,000 units IM q12h
Available: Procaine penicillin, 600,000 units/mL
What volume will you administer?
Formula: Desired amount : x (desired volume) $=$ Drug strength available : volume
400,000 units : x (desired volume) $=600,000$ units: 1 mL
Multiply means: $(600,000$ units $)(x)=600,000$ units- x
Multiplyextremes: $(400,000$ units $)(1 \mathrm{~mL})=400,000$ units-mL
$600,000 x=400,000$ units-mL

$$
\text { Reduce : } \begin{aligned}
x & =\frac{400,000 \text { units } \mathrm{mL}}{600,000 \text { tnits }} \\
& =0.66 \mathrm{~mL} \text { procaine penicillin }
\end{aligned}
$$

EXAMPLE 4

Potassium chloride is supplied as $6,7,8,10$, and 20 mEq per tablet.
Medication Problem: Health care provider's order: Potassium chloride, 40 mEq PO bid
Available: Potassium chloride, $20 \mathrm{mEq} /$ tablet
How many tablets will be administered per dose?
Formula: Desired amount : x (desired quantity) $=$ Drug strength available : 1 tablet
$40 \mathrm{mEq}: x$ (desired quantity) $=20 \mathrm{mEq}: 1$ tablet
Multiply means: $(20 \mathrm{mEq})(x)=20 \mathrm{mEq}-x$
Multiply extremes: $(40 \mathrm{mEq})(1$ tablet $)=40 \mathrm{mEq}$-tablet
$20 \mathrm{mEq}-x=40 \mathrm{mEq}$-tablet
Reduce : $x=\frac{40 \mathrm{mEq} / \text { tablet }}{20 \mathrm{mEq} / \text { tablet }}=\begin{aligned} & 2 \text { tablets potassium } \\ & \text { chloride }\end{aligned}$
(Note: Potassium chloride is best given with or after meals with a full glass of water to decrease gastric upset. Remind the patient not to chew or crush tablets and to swallow them whole.)

CALCULATION OF INTRAVENOUS FLUID AND MEDICATION ADMINISTRATION RATES

Objective

8. Use formulas to calculate intravenous fluid and medicine administration rates.

Key Terms

administration sets (ăd-mĭn-ǐ-STRĀ-shǔn)
drip chamber (DRĬP CHĀM-bǔr)
macrodrip (MĂ-krō-drị)
microdrip (Mī-krō-drịp)
drop factor (DF)
round (RǑWND)

INTRAVENOUS FLUID ORDERS, DRIP RATES, PUMPS, AND ROUNDING

Intravenous (IV) solutions (fluids) consist of a liquid (solvent) that contains one or more dissolved substances (solutes). The health care provider orders a specific type and volume of solution to be infused over a specific time span. (See Chapter 12 for methods of IV administration, and see Table 12-1 for a listing of common IV solutions and abbreviations.)

The order can be written in any of the following three ways:

1. $1000 \mathrm{~mL} \mathrm{5} \mathrm{\%} \mathrm{dextrose} \mathrm{and} \mathrm{water} \mathrm{(D5W)} \mathrm{to} \mathrm{infuse}$ intravenously over the next 8 hours
2. 1 L D5W IV over next 8 hours
3. Infuse 5% dextrose intravenously at $125 \mathrm{~mL} / \mathrm{hr}$

Administration sets that are used to deliver a specified volume of solution are different, depending on the company that manufactured the set. The administration set can have different lengths and diameters of tubing, it may involve the presence or absence of inline filters, and it can have a differing number of Y ports (sites) (see Figure 12-1).

The drip chamber of the administration set is either a macrodrip, which delivers large drops, or a microdrip, which delivers small drops.

Macrodrip administration sets are not standardized in terms of drops per milliliter. Commonly used volumes are 10,15 , and 20 drops per milliliter ($\mathrm{gtt} / \mathrm{ml}$). The "drops per milliliter" is called the drop factor (DF).

All microdrip chambers deliver 60 drops (gtt) per mL . The microdrip administration set is used whenever a small volume of IV solution is ordered to be infused over a specified time (e.g., in neonatal and pediatric units). In some clinical settings, a microdrip administration set is used whenever the volume of solution to infuse is less than 100 mL per hour (Figure 6-2).

FIGURE 6-2 A, Macrodrip chamber. B, Microdrip chamber.

The box that contains the administration set always has the drop factor printed on the label.

ROUNDING

Not all calculations that are used to compute IV fluid administration rates divide out evenly; it is necessary to have a uniform way to round the answers to whole numbers. One method that is commonly used is to divide the numbers, carry the calculations to hundredths, and round to tenths. If the tenth is 0.5 or more, increase the answer to the next whole number. If the tenth is less than 0.5 , leave the whole number at its current value.

EXAMPLES

$$
\begin{aligned}
& 167.57=167.6=168 \\
& 167.44=167.4=167 \\
& 32.15=32.2=32 \\
& 32.45=32.5=33
\end{aligned}
$$

The nurse must be able to calculate the rate for the prescribed infusion, whether it is being given as an additive in the primary IV fluid (using a secondary set called a piggyback or rider setup [see Chapter 12] with calibrated regulators) or infused by means of an electronic infusion pump.

VOLUMETRIC AND NONVOLUMETRIC PUMPS

When determining the flow rate for infusion pumps, the type of infusion pump must first be determined. Pumps are categorized as either volumetric or nonvolumetric. Volumetric pumps are set to measure the volume being infused in milliliters per hour, whereas nonvolumetric pumps are set in drops per minute. (Check the individual pump being used to see the type of calibration $[\mathrm{mL} / \mathrm{hr}$ or $\mathrm{gtt} / \mathrm{min}]$ printed on the display window of the pump.) (See Chapter 12 for a discussion of the types of infusion control devices.)

CALCULATION OF FLOW RATES

Milliliters per Hour (mL/hr)

To calculate flow rates, divide the total volume in milliliters (number of mL) of fluid ordered for infusion by the total number of hours that the infusion is to run. This will equal the milliliters per hour ($\mathrm{mL} / \mathrm{hr}$) that the infusion is to run.

$$
\frac{\text { Number of } \mathrm{mL}}{\text { Number of hours }}=\mathrm{mL} / \mathrm{hr}
$$

EXAMPLE

Infuse 1000 mL lactated Ringer's (LR) solution over 10 hours

$$
\frac{\text { Number of } \mathrm{mL}=1000 \mathrm{~mL}}{\text { Number of hours }=10 \mathrm{hr}}=100 \mathrm{~mL} / \mathrm{hr}
$$

Calculate the following problems:

Health Care
 Provider's Order

a. $1000 \mathrm{~mL} \mathrm{5} \mathrm{\%} \mathrm{dextrose}$ in water
b. 1000 mL lactated Ringer's
c. $500 \mathrm{~mL} 0.9 \%$ sodium chloride

Duration of Infusion 12 hr	Rate $(\mathbf{m L} / \mathrm{hr})$
	$=\ldots \mathrm{mL} / \mathrm{hr}$
6 hr	$=\ldots$

Calculating Rates of Infusion for Times Other Than 1 Hour

The nurse must be able to convert infusion rates given in minutes to milliliters per hour because volumetric pumps are calibrated in milliliters.

Using dimensional analysis, which is a technique that allows for the conversion from one unit to another, start with what is available, proceed with what is ordered, and then determine what will be calculated.

The volume to be infused that has been divided over the time is then converted to the desired rate by crossing out the units that you want to eliminate.

Calculate the following problems:

Health Care Provider's Order

a. $50 \mathrm{~mL} 0.9 \% \mathrm{NaCl}$ with ampicillin 1 g
b. 150 mL D5W with gentamicin 80 mg
c. $50 \mathrm{~mL} 0.9 \% \mathrm{NaCl}$ with ondansetron 32 mg

Duration of Infusion 20 min	Rate $(\mathrm{mL} / \mathrm{hr})$
	$=\ldots \mathrm{mL} / \mathrm{hr}$
30 min	$=\ldots$
$\mathrm{mL} / \mathrm{hr}$	

Drops per Minute (gtt/min)

The nurse must calculate drops per minute whenever a drug infusion is given with the use of a secondary administration set, a nonvolumetric infusion pump, or a calibrated cylinder. The formula is as follows:
$\frac{\text { Total volume (milliliters) to infuse } \times \text { Drop factor }}{\text { Time }(\mathrm{min})}=\mathrm{gtt} / \mathrm{min}$
Total volume (milliliters) to infuse \times

$$
\frac{\text { Drop factor }(\mathrm{gtt} / \mathrm{mL})}{\text { Time }(\min)}=\mathrm{gtt} / \mathrm{min}
$$

Total volume (milliliters) to infuse \times

$$
\frac{\text { Drop factor }(\mathrm{gtt} / \mathrm{mL})}{\text { Time }(\mathrm{min})}=\mathrm{gtt} / \mathrm{min}
$$

Remember that the answer, which is the number of drops, cannot be given as a fraction; as previously discussed, the answer must be rounded to a whole number.

EXAMPLE

$31.4 \mathrm{gtt}=31 \mathrm{gtt}$
$31.5 \mathrm{gtt}=32 \mathrm{gtt}$

Calculate the following problems.
Directions: Use a drop factor of $15 \mathrm{gtt} / \mathrm{mL}$ for volumes of 100 mL or more per hour; use a microdrip ($60 \mathrm{gtt} / \mathrm{mL}$) for volumes of less than $100 / \mathrm{hr}$. (Note: Whenever a microdrip is used, milliliters per hour equals drops per minute, so no calculations are needed.)

Health Care Provider's Order	Duration of Infusion	Rate (gtt/min)
a. 125 mL D 5 W	60 min	$=_\quad \mathrm{gtt} / \mathrm{min}$
b. 100 mL lactated Ringer's	60 min	$=_\quad \mathrm{gtt} / \mathrm{min}$
c. $50 \mathrm{~mL} 0.9 \% \mathrm{NaCl}$	20 min	$=\quad \mathrm{gtt} / \mathrm{min}$

It is important to always label the numbers with appropriate units during the calculation to keep track of what the answer means. Cross out the values that are alike in the numerator and the denominator to end up with the desired answer.

DRUGS ORDERED IN UNITS PER HOUR OR MILLIGRAMS PER HOUR

Health care providers may order certain medicines to be administered in units per hour (units/hr) or in milligrams per hour ($\mathrm{mg} / \mathrm{hr)}$). Drugs that are ordered in this way are administered by means of an electronic infusion pump. The formula is as follows.

Set up a proportion:
Total units or : Total volume $=$ Ordered amount milligrams of of solution of drugs in units or drug added $\mathrm{mg} / \mathrm{hr}$: x (volume of solution)

EXAMPLE

Administered as units/hr
Approach 1: Health care provider's order: mix 10,000 units of heparin in 1000 mL D5W; infuse 80 units per hour. What volume of solution should be administered per hour?
10,000 units: $1000 \mathrm{~mL}=80$ units $/ \mathrm{hr}: x \mathrm{~mL}$
Multiply the means:
$1000 \mathrm{~mL} \times 80$ units $/ \mathrm{hr}=80,000 \mathrm{~mL}$ - units $/ \mathrm{hr}$.
Multiply the extremes: 10,000 units $\times x=10,000$ units $-x$.
10,000 units $-x=80,000 \mathrm{~mL}-$ units $/ \mathrm{hr}$
Divide both sides of equation by number with x.

$$
\begin{aligned}
& \frac{10,000 \text { units }-x}{10,000 \text { units }}=\frac{80,000 \mathrm{~mL}-\text { units } / \mathrm{hr}}{10,000 \text { units }} \\
& \frac{10,000 \text { units }-x}{10,000 \text { units }}=\frac{80,000 \mathrm{~mL}-\text { units } / \mathrm{hr}}{10,000 \text { units }} \\
& x=8 \mathrm{~mL} / \mathrm{hr}
\end{aligned}
$$

Set infusion pump at 8 mL per hour to deliver 80 units of heparin per hour.

Approach 2: Health care provider's order: Mix 25,000 units of heparin in 250 mL D5W; infuse 800 units per hour. What volume of solution should be administered per hour?
25,000 units:250 mL : 800 units/hr: $x \mathrm{~mL}$
Multiply the means: $250 \mathrm{~mL} \times 800$ units $/ \mathrm{hr}=200,000 \mathrm{~mL}-$ units/hr

Multiply the extremes: 25,000 units $\times x=25,000$ units $-x$.
25,000 units- $x=200,000 \mathrm{~mL}$-units $/ \mathrm{hr}$
Divide both sides of the equation by the number associated with x.
$\frac{25,000 \text { units }-x}{25,000 \text { units }}=\frac{200,000 \mathrm{~mL}-\text { units } / \mathrm{hr}}{25,000 \text { units }}$
$\frac{25,000 \text { units }-x}{25,000 \text { units }}=\frac{200,000 \mathrm{~mL}-\text { units } / \mathrm{hr}}{25,000 \text { units }}$
$x=8 \mathrm{~mL} / \mathrm{hr}$
Set the infusion pump at $8 \mathrm{~mL} / \mathrm{hr}$ to deliver 800 units of heparin per hour.

EXAMPLE

Administered as $\mathrm{mL} / \mathrm{hr}$.
The health care provider could order the number of milliliters of heparin per hour rather than specifying the order in units per hour.
Mix 10,000 units heparin in 1000 mL D5W; infuse at $15 \mathrm{~mL} / \mathrm{hr}$. How many units of heparin are being delivered per hour?
10,000 units: $1000 \mathrm{~mL}=x$ units: $15 \mathrm{~mL} / \mathrm{hr}$
Multiply the means: $1000 \mathrm{~mL} \times x=1000 \mathrm{~mL} x$
Multiply the extremes: 10,000 units $\times 15 \mathrm{~mL} / \mathrm{hr}=$ 150,000 U-mL/hr.
$1000 \mathrm{~mL} x=150,000$ units-mL/hr
Divide both sides of equation by number with x.
$\frac{1000 \mathrm{~mL}-x}{1000 \mathrm{~mL}}=\frac{150,000 \text { units }-\mathrm{mL} / \mathrm{hr}}{1000 \mathrm{~mL}}$
$\frac{1000 \mathrm{mt}-x}{1000 \mathrm{mt}}=\frac{150,000 \text { units }-\mathrm{mt} / \mathrm{hr}}{1000 \mathrm{mt}}$
Reduce: $x=150$ units/hr

EXAMPLE

Administered as milligrams/hr
Health care provider's order: Mix 500 mg dopamine in 500 mL of $\mathrm{D} 5 \mathrm{~W} / 0.45 \% \mathrm{NaCl}$ to infuse at $30 \mathrm{mg} / \mathrm{hr}$. What volume of solution should be administered per hour?
$500 \mathrm{mg}: 500 \mathrm{~mL}=30 \mathrm{mg} / \mathrm{hr}: x$ volume
Multiply the means: $500 \mathrm{~mL} \times 30 \mathrm{mg} / \mathrm{hr}=15,000 \mathrm{~mL}-\mathrm{mg} /$ hr
Multiply the extremes: $500 \mathrm{mg} \times x=500 \mathrm{mg}-x$
$500 \mathrm{mg}-x=15,000 \mathrm{~mL}-\mathrm{mg} / \mathrm{hr}$
Divide both sides of the equation by the number associated with x.
$\frac{500 \mathrm{mg}-x}{500 \mathrm{mg}}=\frac{15,000 \mathrm{~mL}-\mathrm{mg} / \mathrm{hr}}{500 \mathrm{mg}}$
$\frac{500 \mathrm{mg}-x}{500 \mathrm{mg}}=\frac{15,000 \mathrm{~mL}-\mathrm{mg} / \mathrm{hr}}{500 \mathrm{mg}}$
Reduce: $x=30 \mathrm{~mL} / \mathrm{hr}$
Set infusion pump at $30 \mathrm{~mL} / \mathrm{hr}$.

EXAMPLE

Administered as mcg $/ \mathrm{kg} / \mathrm{hr}$
Health care provider's order: Mix 500 mg dopamine in 500 mL of D5W to infuse at $4 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV. The patient weighs 150 pounds. What volume of solution should be administered per hour?
Conversions: 150 pounds $=68.18 \mathrm{~kg}$
Calculate the dosage per minute first: $4 \mathrm{mcg} / \mathrm{kg} / \mathrm{min} \times$ $68.18 \mathrm{~kg}=272.73 \mathrm{mcg} / \mathrm{min}$
Convert $\mathrm{mcg} / \mathrm{min}$ to $\mathrm{mcg} / \mathrm{hr}: 272.73 \mathrm{mcg} / \mathrm{min} \times 60 \mathrm{~min}$ $=16,363.8 \mathrm{mcg} / \mathrm{hr}$
Convert $\mathrm{mcg} / \mathrm{hr}$ to $\mathrm{mg} / \mathrm{hr}: 16,363.8 \div 1000=16.36 \mathrm{mg} / \mathrm{hr}$
Calculate the flow rate: $500 \mathrm{mg}: 500 \mathrm{~mL}=16.36 \mathrm{mg}: x \mathrm{~mL}$
$x=16.36 \mathrm{~mL} / \mathrm{hr}$
To infuse $4 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$, set the rate at $16.36 \mathrm{~mL} / \mathrm{hr}$.
Calculate the following problem:
a. Health care provider's order: Regular insulin 100 units in 100 mL normal saline (NS) infused at 15 units $/ \mathrm{hr}=$
\qquad $\mathrm{mL} / \mathrm{hr}$

FAHRENHEIT AND CENTIGRADE (CELSIUS) TEMPERATURES

Objective

9. Demonstrate proficiency performing conversions between the centigrade and Fahrenheit systems of temperature measurement.

Key Terms

centigrade (SĚN-tǐ-grād)
Celsius (SĚL-sē-ǔs)
Fahrenheit (FĂR-ĕn-hit)

It is necessary for the nurse to be familiar with both the centigrade and the Fahrenheit scales of temperature measurement.

1. The centigrade and Fahrenheit scales differ from each other in the way that they are graduated.
a. On the centigrade (Celsius) scale, the point at which water freezes is marked " 0°."
b. On the Fahrenheit scale, the point at which water freezes is marked " 32°."
c. The boiling point for water in centigrade is $100^{\circ} \mathrm{C}$.
d. The boiling point for water in Fahrenheit is $212^{\circ} \mathrm{F}$.

FIGURE 6-3 Clinical thermometers.
2. The value of graduations (degrees) on the centigrade thermometer differs from the value of degrees on the Fahrenheit thermometer (Figure 6-3).
a. Using the centigrade scale, there are 100 increments (degrees) between the 0° point (i.e., the freezing point of water) and the 100° point (i.e., the boiling point of water).
b. Using the Fahrenheit scale, there are 180 spaces (degrees) between the freezing and boiling points of water.
3. To convert readings from the centigrade scale to the Fahrenheit scale, the centigrade reading is multiplied by 180/100 or $9 / 5$ and then added to 32.
4. To convert a Fahrenheit reading to the centigrade scale, subtract 32 from the Fahrenheit reading, and then multiply by $5 / 9(100 / 180)$.

FORMULA FOR CONVERTING FAHRENHEIT temperature to centigrade TEMPERATURE

(Fahrenheit -32$) \times \frac{5}{9}=$ Centigrade

$$
(\mathrm{F}-32) \times \frac{5}{9}=\mathrm{C}
$$

EXAMPLE
Change $212^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$.
$(\mathrm{F}-32) \times \frac{5}{9}=\mathrm{C}$
$212-32=180$
$180 \times \frac{5}{9}=\frac{900}{9}=100^{\circ} \mathrm{C}$.
Convert the following Fahrenheit temperatures to centigrade:
a. $98.6^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
b. $102.4^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
c. $95.2^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$

FORMULA FOR CONVERTING CENTIGRADE TEMPERATURE TO FAHRENHEIT TEMPERATURE

$\left(\right.$ Centigrade $\left.\times \frac{9}{5}\right)+32=$ Fahrenheit

$$
\left(\mathrm{C} \times \frac{9}{5}\right)+32=\mathrm{F}
$$

EXAMPLE
Change $100^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$.
$\left(\mathrm{C} \times \frac{9}{5}\right)+32=\mathrm{F}$
$\left(100 \times \frac{9}{5}\right)+\frac{900}{5}=180$
$180+32=212^{\circ} \mathrm{F}$
Convert the following centigrade temperatures to Fahrenheit:
a. $37^{\circ} \mathrm{C}=$
b. $35^{\circ} \mathrm{C}=$
c. $41^{\circ} \mathrm{C}=$

Try these problems that involve converting centigrade to Fahrenheit and Fahrenheit to centigrade.
d. The nurse takes the following temperatures with Fahrenheit clinical thermometers: patient A, 104° F; patient B, $99^{\circ} \mathrm{F}$; patient C, $101^{\circ} \mathrm{F}$. The health care provider asks what the centigrade temperature is for each patient. Work your problems to convert Fahrenheit temperatures to centigrade temperature, and then check your answers.
e. The nurse takes the following temperatures with centigrade clinical thermometers: patient $\mathrm{D}, 37^{\circ}$ C ; patient E, $37.8^{\circ} \mathrm{C}$; patient F, $38^{\circ} \mathrm{C}$. The health care provider asks what the Fahrenheit temperature is for each patient. Work your problems to convert centigrade temperature to Fahrenheit temperatures, and then check your answers.
Most larger hospitals currently use electronic thermometers that give direct centigrade or Fahrenheit readings.

Get Ready for the NCLEX ${ }^{\oplus}$ Examination!

Additional Learning Resources

SG Go to your Study Guide for additional Review Questions for the NCLEX ${ }^{\circledR}$ Examination, Critical Thinking Clinical Situations, and other learning activities to help you to master this chapter's content.
©volve Go to your Evolve Web site (http://evolve.elsevier.com/ Clayton) for the following FREE learning resources:

- Animations
- Appendices
- Drug dosage Calculators
- Drugs@FDA (catalog of FDA-approved drug products)
- Gold Standard Patient Teaching Handouts in English and Spanish
- Interactive Drug Flashcards
- Interactive Review Questions for the NCLEX ${ }^{\circledR}$ Examination and more!

Answers to Practice Questions

Working With Fractions
a. $5 / 100=1 / 20($ take out 5$)$
b. $3 / 21=1 / 7$ (take out 3)
c. $6 / 36=1 / 6$ (take out 6)
d. $12 / 44=3 / 11$ (take out 4)
e. $2 / 4=1 / 2$ (take out 2)

Adding Common Fractions

a. $5 / 8$
b. $13 / 28$

Adding Mixed Numbers

a. $4 / 4=1$
b. $6 / 6=1$
c. $34 / 50=17 / 25$

Subtracting Fractions

a. $1 / 8$
b. $1 / 300$

Subtracting Mixed Numbers

a. $9 / 24=3 / 8$
b. $313 / 16$

Multiplying a Whole Number by a Fraction
a. $3 / 2=11 / 2$
b. $9 / 1=9$

Multiplying Mixed Numbers

a. $5 / 6$
b. $75 / 32=211 / 32$

Fractions as Decimals

a. 0.01
b. 0.625
c. 0.5

Rounding the Answer

a. $1200 \times 0.009=10.8=11$
b. $575 \times 0.02=11.5=12$
c. $515 \times 0.02=10.3=10$
d. $510 \times 0.04=20.4=20$

Changing Decimals to Common Fractions
a. $0.3=1 / 10$
b. $0.4=4 / 10=2 / 5$
c. $0.5=5 / 10=1 / 2$
d. $0.05=5 / 100=1 / 20$
e. $0.25=25 / 100=1 / 4$
f. $0.50=50 / 100=1 / 2$
g. $0.75=75 / 100=3 / 4$
h. $0.002=2 / 1000=1 / 500$

Changing Common Fractions to Decimal Fractions

a. $1 / 2$ means $1 \div 2=0.5$
b. $1 / 6$ means $1 \div 6=0.166$ or 0.17
c. $2 / 3$ means $2 \div 3=0.66$ or 0.7
d. $3 / 4$ means $3 \div 4=0.75$ or 0.8
e. $1 / 50$ means $1 \div 50=0.02$

Changing Percents to Fractions

a. $25 \%=25 / 100=1 / 4$
b. $15 \%=15 / 100=3 / 20$
c. $10 \%=1 \% / 100=1 / 10$
d. $20 \%=20 / 100=1 / 5$
e. $50 \%=50 / 100=1 / 2$
f. $2 \%=2 / 100=1 / 50$
g. $121 / 2 \%=12.5 / 100=125 / 1000=1 / 8$
h. $1 / 4 \%=1 / 4 / 100=0.25 / 100=25 / 10,000=1 / 400$
i. $150 \%={ }^{150} / 100=1 \frac{1}{2}$
j. $4 \%=4 / 100=1 / 25$

Changing Percents to Decimal Fractions

a. $4 \%=0.04$
b. $1 \%=0.01$
c. $2 \%=0.02$
d. $25 \%=0.25$
e. $50 \%=0.5$
f. $10 \%=0.1$
g. $12 \frac{1}{2} \%=12.5 \%$ or 0.125
h. $1 / 4 \%=0.25 \%$ or 0.0025

Changing Common Fractions to Percents

a. $1 / 400=0.0025 \times 100=0.25 \%$
b. $1 / 8=0.125 \times 100=12.5 \%$

Changing Decimal Fractions to Percents

a. $0.05=5 \%$
b. $0.25=25 \%$
c. $0.15=15 \%$
d. $0.125=12.5 \%$
e. $0.0025=0.25 \%$

Changing Ratio to Percent

a. $1: 5=1 / 5=0.2 \times 100=20 \%$

Changing Percent to Ratio

a. $2 \%=2 / 100=1 / 50=1: 50$
b. $50 \%=50 / 100=1 / 2=1: 2$
c. $75 \%=75 / 100=3 / 4=3: 4$

Simplifying Ratios

a. $4: 12=4 / 12$ or $1 / 3$
b. $5: 10=5 / 10$ or $1 / 2$
c. $10: 5=10 / 5$ or 2
d. $75: 100=75 / 100$ or $3 / 4$
e. $1 / 4: 100=1 / 4 / 100$ or $0.25 / 100=25 / 10,000=1 / 400$
f. $15: 20=15 / 20$ or $3 / 4$
g. $3: 9=3 / 9$ or $1 / 3$

Proportions

a. $9: x:: 5: 300$
$5 x=(9 \times 300)$
$5 x=2700$
$x=(2700 \div 5)$
$x=540$
b. $x: 60:: 4: 120$
$120 x=(60 \times 4)$
$120 x=240$
$x=(240 \div 120)$
$x=2$
c. $5: 3000$: : $15: x$
$5 x=(3000 \times 15)$
$5 x=45,000$
$x=(45,000 \div 5)$
$x=9000$
d. $0.7: 70:: x: 1000$
$70 x=(0.7 \times 1000)$
$70 x=700$
$x=(700 \div 70)$
$x=10$
e. $1 / 400: x:: 2: 1600$
$2 x=(1 / 400 \times 1600)$
$2 x=(1600 \div 400)$
$2 x=4$
$x=(4 \div 2)$
$x=2$
f. $0.2: 8:: x: 20$
$8 x=(0.2 \times 20)$
$8 x=4$
$x=(4 \div 8)$
$x=0.5$
g. $100,000: 3:: 1,000,000: x$ $100,000 x=(3 \times 1,000,000)$ $100,000 x=3,000,000$
$x=(3,000,000 \div 100,000)$ $\mathrm{x}=30$
h. $1 / 4: x:: 20: 400$
$20 x=(1 / 4 \times 400)$
$20 x=(400 \div 4)$
$20 x=100$
$x=(100 \div 20)$
$x=5$

Common Metric Equivalents

a. microgram $=$ MW
b. milliliter $=$ MV
c. liter $=$ MV
d. gram $=\mathrm{MW}$

Converting Milligrams (Metric) to Grams (Metric)

a. $0.4 \mathrm{mg}=0.0004 \mathrm{~g}$
b. $0.12 \mathrm{mg}=0.00012 \mathrm{~g}$
c. $0.2 \mathrm{mg}=0.0002 \mathrm{~g}$
d. $0.1 \mathrm{mg}=0.0001 \mathrm{~g}$
e. $500 \mathrm{mg}=0.5 \mathrm{~g}$
f. $125 \mathrm{mg}=0.125 \mathrm{~g}$
g. $100 \mathrm{mg}=0.1 \mathrm{~g}$
h. $200 \mathrm{mg}=0.2 \mathrm{~g}$
i. $50 \mathrm{mg}=0.05 \mathrm{~g}$
j. $400 \mathrm{mg}=0.4 \mathrm{~g}$
k. $0.2 \mathrm{~g}=200 \mathrm{mg}$
l. $0.250 \mathrm{~g}=250 \mathrm{mg}$
m. $0.125 \mathrm{~g}=125 \mathrm{mg}$
n. $0.0006 \mathrm{~g}=0.6 \mathrm{mg}$
o. $0.004 \mathrm{~g}=4 \mathrm{mg}$

Converting Weight to Kilograms

a. $35 \mathrm{~kg}=77 \mathrm{lb}$
b. $16 \mathrm{~kg}=35.2 \mathrm{lb}$
c. $65 \mathrm{~kg}=143 \mathrm{lb}$
d. $125 \mathrm{lb}=56.8 \mathrm{~kg}$
e. $9 \mathrm{lb}=4.1 \mathrm{~kg}$
f. $180 \mathrm{lb}=81.8 \mathrm{~kg}$

Milliliters per Hour (mL/hr)

a. $1000 \mathrm{~mL} \mathrm{5} \mathrm{\%}$ dextrose $12 \mathrm{hr}=83 \mathrm{~mL} / \mathrm{hr}$ in water
b. 1000 mL lactated $6 \mathrm{hr}=167 \mathrm{~mL} / \mathrm{hr}$ Ringer's
c. $500 \mathrm{~mL} 0.9 \%$ sodium $4 \mathrm{hr}=125 \mathrm{~mL} / \mathrm{hr}$ chloride

Calculating Rates of Infusion for Times Other Than
 \section*{1 Hour}

a. $50 \mathrm{~mL} 0.9 \% \mathrm{NaCl}$ with ampicillin $1 \mathrm{~g}=50 \mathrm{~mL} / 20 \mathrm{~min}=$ $2.5 \mathrm{~mL} / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr}=150 \mathrm{~mL} / \mathrm{hr}$
b. 150 mL D5W with gentamicin $80 \mathrm{mg}=150 \mathrm{~mL} / 30 \mathrm{~min}=$ $5 \mathrm{~mL} / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr}=300 \mathrm{~mL} / \mathrm{hr}$
c. $50 \mathrm{~mL} 0.9 \% \mathrm{NaCl}$ with famotidine $40 \mathrm{mg} 50 \mathrm{~mL} / 15 \mathrm{~min}$ $=3.33 \mathrm{~mL} / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr}=200 \mathrm{~mL} / \mathrm{hr}$

Drops per Minute

a. $125 \mathrm{~mL} / 60 \mathrm{~min}=2 \mathrm{mt} / \mathrm{min} \times 15 \mathrm{gtt} / \mathrm{mt}=31 \mathrm{gtt} / \mathrm{min}$
b. $100 \mathrm{~mL} / 60 \mathrm{~min}=1.6 \mathrm{~mL} / \mathrm{min} \times 15 \mathrm{gtt} / \mathrm{mL}=25 \mathrm{gtt} / \mathrm{min}$
c. $50 \mathrm{~mL} / 20 \mathrm{~min}=2.5 \mathrm{~mL} / \mathrm{min} \times 60 \mathrm{gtt} / \mathrm{mL}=150 \mathrm{gtt} / \mathrm{min}$

Drugs Ordered in Units per Hour or Milligrams per Hour

a. 100 units $/ 100 \mathrm{~mL}=1 \mathrm{unit} / \mathrm{mL} \times 15$ units $/ \mathrm{hr}=$ [because 1 unit/1 mL $=1 \mathrm{~mL} / 1$ unit, use the following:]
$1 \mathrm{~mL} / 1$ unit $\times 15$ units $/ \mathrm{hr}=15 \mathrm{~mL} / \mathrm{hr}$

Formula for Converting Fahrenheit Temperature to Centigrade Temperature
a. $98.6^{\circ} \mathrm{F}=[(98.6-32) \times 5 / \mathrm{F}]=66.6 \times 5 / 9=37^{\circ} \mathrm{C}$
b. $102.4^{\circ} \mathrm{F}=[(102.4-32) \times 5 /]=70.4 \times 5 / 9=39.1^{\circ} \mathrm{C}$
c. $95.2^{\circ} \mathrm{F}=\left[(95.2-32) \times 5 / 9=63.2 \times 5 / 9=35.1^{\circ} \mathrm{C}\right.$

Formula for Converting Centigrade Temperature to Fahrenheit Temperature
a. $37^{\circ} \mathrm{C}=[37 \times 9 / 5=333 / 5=66.6+32]=98.6^{\circ} \mathrm{F}$
b. $35^{\circ} \mathrm{C}=[35 \times 9 / 5=315 / 5=63+32]=95^{\circ} \mathrm{F}$
c. $41^{\circ} \mathrm{C}=[41 \times 9 / 5=369 / 5=73.8+32]=105.8^{\circ} \mathrm{F}$
d. patient $\mathrm{A}, 40^{\circ} \mathrm{C}$; patient $\mathrm{B}, 37.2^{\circ} \mathrm{C}$; patient $\mathrm{C}, 38.3^{\circ} \mathrm{C}$.
e. patient $\mathrm{D}, 98.6^{\circ} \mathrm{F}$; patient $\mathrm{E}, 100^{\circ} \mathrm{F}$; patient $\mathrm{F}, 100.4^{\circ} \mathrm{F}$.

[^0]: Numerator (names how many parts are used)
 Denominator (tells how many pieces into which the whole is divided)

