INVERSE FUNCTIONS

INVERSE FUNCTION f^{-1} : If the function f is the set of ordered pairs (x,y), then the inverse function f^{-1} is the set of ordered pairs (y,x) formed by reversing the ordered pairs of f, and if and only if the new set of ordered pairs fits the definition of a function.

ONE-TO-ONE FUNCTION: A function where each x value in the domain is assigned a different y value so that no two ordered pairs have the same second coefficient.

HORIZONTAL LINE TEST: Graph the function. If a line parallel to the *x*-axis intersects the graph at more than one point the equation is not a one-to-one function and its inverse is not a function.

STEPS TO FIND AN INVERSE FUNCTION:

- 1) Start with a one-to-one function. Interchange *x* and *y* in the equation.
- 2) Solve the resulting equation for y, and then replace y with $f^{-1}(x)$.

Example:

Find the inverse function of f(x) = 2x + 3. Some of this function's ordered pairs are (-1,1),(0,3),(1,5),(2,7).

1) Replace
$$f^{-1}(x)$$
 with y

$$y = 2x + 3$$

2) Interchange
$$x$$
 and y

$$x = 2y + 3$$

$$\frac{x-3}{2} = y$$

4) Replace
$$y$$
 with $f^{-1}(x)$

$$f^{-1}(x) = \frac{x-3}{2}$$

Some of the inverse function's ordered pairs are

$$(1,-1),(3,0),(5,1),(7,2)$$