Properties of Circles | Type of
Angle | Diagram | Angle
Relationships | Segment
Relationships | |--|---|--|--| | central
angle | A
O
B | $m \angle 1 = \widehat{mAB}$ O is the center of the circle (Definition of measure of arc) | OA = OB | | inscribed
angle | $B \bigcirc_{C}^{A}$ | $m \angle 1 = \frac{1}{2} \widehat{mAC}$
vertex on circle
(Theorem 6.2) | no segment
relationship | | angles formed
by intersecting
chords | $A \stackrel{E}{\underbrace{E}}_{D} C$ | $m \angle 1 = \frac{1}{2}(\widehat{mAB} + \widehat{mCD})$
vertex inside circle
(Theorem 6.5) | (AE)(EC) = (BE)(ED)
(Theorem 6.13) | | angle formed
by two secants | $C \xrightarrow{D} \stackrel{E}{\bigoplus} A$ | $m \angle 1 = \frac{1}{2}(\widehat{mAE} - \widehat{mBD})$
vertex outside circle
(Theorem 6.14) | (CA)(CB) = (CE)(CD)
(Theorem 6.15) | | angle formed
by tangent and
a chord | A B C | $m \angle 1 = \frac{1}{2}(m\widehat{BC})$
vertex on circle
(Theorem 6.16) | no segment relationship | | angle formed
by secant
and tangent | C D | $m \angle 1 = \frac{1}{2}(\widehat{mAD} - \widehat{mAC})$
vertex outside circle
(Theorem 6.17) | $\frac{BD}{AB} = \frac{AB}{BC}$ (Theorem 6.20) | | angle formed
by two tangents | A DE C | $m \angle 1 = \frac{1}{2} (m\widehat{BCD} - m\widehat{BED})$ vertex outside circle (Theorem 6.18) | AB = AD (Theorem 6.19) |