Properties of Circles

Type of Angle	Diagram	Angle Relationships	Segment Relationships
central angle	A O B	$m \angle 1 = \widehat{mAB}$ O is the center of the circle (Definition of measure of arc)	OA = OB
inscribed angle	$B \bigcirc_{C}^{A}$	$m \angle 1 = \frac{1}{2} \widehat{mAC}$ vertex on circle (Theorem 6.2)	no segment relationship
angles formed by intersecting chords	$A \stackrel{E}{\underbrace{E}}_{D} C$	$m \angle 1 = \frac{1}{2}(\widehat{mAB} + \widehat{mCD})$ vertex inside circle (Theorem 6.5)	(AE)(EC) = (BE)(ED) (Theorem 6.13)
angle formed by two secants	$C \xrightarrow{D} \stackrel{E}{\bigoplus} A$	$m \angle 1 = \frac{1}{2}(\widehat{mAE} - \widehat{mBD})$ vertex outside circle (Theorem 6.14)	(CA)(CB) = (CE)(CD) (Theorem 6.15)
angle formed by tangent and a chord	A B C	$m \angle 1 = \frac{1}{2}(m\widehat{BC})$ vertex on circle (Theorem 6.16)	no segment relationship
angle formed by secant and tangent	C D	$m \angle 1 = \frac{1}{2}(\widehat{mAD} - \widehat{mAC})$ vertex outside circle (Theorem 6.17)	$\frac{BD}{AB} = \frac{AB}{BC}$ (Theorem 6.20)
angle formed by two tangents	A DE C	$m \angle 1 = \frac{1}{2} (m\widehat{BCD} - m\widehat{BED})$ vertex outside circle (Theorem 6.18)	AB = AD (Theorem 6.19)