DEFINITIONS

PERIMETER - AREA - VOLUME

Perimeter

Distance around the outside edge Perimeter has 1 dimension so units need no exponent. of a figure.

Area

Number of square units in a flat surface. (i.e. 1 inch² = 1 inch by 1 inch)
Area has 2 dimensions so units are squared.

Volume

Volume = (Area of the Base)(Height of the Solid) (i.e. $1 \text{ inch}^3 = 1 \text{ inch by } 1 \text{ inch by } 1 \text{ inch}$) Number of cubic units in a solid figure. Volume has 3 dimensions so units are cubed.

Surface Area

SA = (Base Figure's Perimeter)(Height of the Solid) +2(Area of the Base) The sum of the areas of all the outside surfaces of a solid figure

Lateral Surface Area

LSA = (Base Figure's Perimeter)(Height of the Solid) The surface area on the sides of a solid figure (excludes the top and bottom surface area)

CALCULATIONS:

Rectangle or Square

 $Area = length \times width = l \times w$

Parallelogram

 $Area = base \times height = b \times h$

Triangle

 $Area = \frac{1}{2} \times base \times height = \frac{1}{2} \times b \times h$

Trapezoid

 $Area = \frac{1}{2}(sum of the bases) \times height = \frac{1}{2}(b_1 + b_2) \times h$

Circle

 $Circumference = 2\pi(radius) \text{ or } \pi(diameter)$

$$C = 2\pi \cdot r \text{ or } \pi \cdot d$$

 $Area = \pi (radius)^2 = \pi \cdot r^2$

PERIMETER - AREA - VOLUME (CONT.)

MORE CALCULATIONS:

Rectangular Prism or Cube

 $SurfaceArea = 2w \cdot l + 2l \cdot h + 2w \cdot h$ $Volume = length \times width \times height$ $= l \times w \times h$

Sphere

 $SurfaceArea = 4\pi (radius)^2 = 4\pi \cdot r^2$ $Volume = \frac{4}{3}\pi (radius)^3 = \frac{4}{3}\pi \cdot r^3$

Right Cylinder

 $SurfaceArea = 2\pi (radius)^2 + 2\pi (radius)(height)$ $Volume = \pi (radius)^2 height = \pi \cdot r^2 h$ $=2\pi\cdot r^2+2\pi\cdot r\cdot h$

Pyramid

Surface Area = $(base\ area) + \frac{1}{2}(slant\ height)(base\ perimeter)$ $Volume = \frac{1}{3}(base\ area)(height) = \frac{1}{3}(base\ area) \cdot h$ = $(base\ area) + \frac{1}{2} \cdot l \cdot (base\ perimeter)$

 $Volume = \frac{1}{3}\pi(radius)^{2}(height) = \frac{1}{3}\pi \cdot r^{2} \cdot h$

 $Surface\ Area = \pi(radius)^2 + \pi(radius)(slant\ height)$ $=\pi \cdot r^2 + \pi \cdot r \cdot s$

When s is unknown it can be calculated by

 $s = \sqrt{(radius)^2 + (height)^2} = \sqrt{r^2 + h^2}$

